OTIMIZAÇÃO DE PORTFÓLIOS COM MÉTODO DOS POLINÔMIO CANÔNICOS CRUZADO E CLUSTERS
Palabras clave:
otimização de portfólios, experimento de mistura cruzado, ativos financeirosResumen
A metodologia de engenharia chamada de polinômios canônicos ou projeto de experimentos de misturas, e projeto de misturas cruzado foi aplicada para otimizar portfólios de ativos financeiros. Aqui é apresentado também o método de aglutinação aplicado ao conceito de portfólio, a formação de clusters. Este trabalho foi motivado pela possibilidade de diminuir o número de execuções de experimentos com um grande número de variáveis, o que é aplicado em um novo tipo de estudo. Vinte e quatro diferentes ativos foram usados para as demonstrações e exemplos. Os resultados demonstraram é possível usar o experimento cruzado de mistura para agrupamentos de empresas e pode ser utilizado em qualquer quantidade de ativos. A portfólio ideal foi encontrada usando a função desirability como método de otimização. No final, novas propostas são mostradas para os estudos futuros. A comparação foi feita contra o modelo de portfólio com misturas simples sem clusters.
Referencias
Amihud, Yakov, & Barnea, Amir. 1974. Portfolio selection for managerial control. Omega, 2(6), 775 783.
Andersson, Oivind. 2012. Experiment!: Planning, Implementing and Interpreting. John Wiley & Sons.
Artzner, Philippe, Delbaen, Freddy, Eber, Jean-Marc, & Heath, David. 1999. Coherent measures of risk. Mathematical Finance, 9(3), 203 228.
Bertland, Daniel, & Asgharian, Hossein. 2008. The Perfect Portfolio.
Better, Marco, & Glover, Fred. 2006. Selecting project portfolios by optimizing simulations. The Engineering Economist, 51(2), 81 97.
Borges, Cleber N, Bruns, Roy E, Almeida, Aline A, & Scarminio, Ieda S. 2007. Mixture mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis. Analytica chimica acta, 595(1), 28 37.
Brandvik, Per Johan, & Daling, Per S. 1998. Optimisation of oil spill dispersant composition by mixture design and response surface methods. Chemometrics and intelligent laboratory systems, 42(1), 63 72.
Cass, David, & Stiglitz, Joseph E. 1970. The structure of investor preferences and asset returns, and separability in portfolio allocation: A contribution to the pure theory of mutual funds. Journal of Economic Theory, 2(2), 122 160.
Chan, Ling-Yau. 1988. Optimal design for a linear log contrast model for experiments with mixtures. Journal of statistical planning and inference, 20(1), 105 113.
Chiarawongse, Anant, Kiatsupaibul, Seksan, Tirapat, Sunti, & Roy, Benjamin Van. 2012. Portfolio selection with qualitative input. Journal of Banking & Finance, 36(2), 489 496.
Cornell, John. 2002. Experiments with mixtures. 28. New York: John Wiley & Sons, Inc.
Cornell, John A. 1971. Process variables in the mixture problem for categorized components. Journal of the American Statistical Association, 66(333), 42 48.
Cornell, John A. 2011a. Experiments with mixtures: designs, models, and the analysis of mixture data. Vol. 895. John Wiley & Sons.
Cornell, John A. 2011b. Experiments with mixtures: designs, models, and the analysis of mixture data. Vol. 895. John Wiley & Sons.
Cornell, John A, & Ramsey, Phillip J. 1997. Modeling the component linear and nonlinear blending properties in a two-stage mixture experiment. Nonlinear Analysis: Theory, Methods & Applications, 30(7), 4041 4050.
Costa, OLV, & Paiva, AC. 2002. Robust portfolio selection using linear-matrix inequalities. Journal of Economic Dynamics and Control, 26(6), 889 909.
De Oliveira, Francisco Alexandre, De Paiva, Anderson Paulo, Lima, José Wanderley Marangon, Balestrassi, Pedro Paulo, & Mendes, Ronã Rinston Amaury. 2011. Portfolio optimization using Mixture Design of Experiments: Scheduling trades within electricity markets. Energy Economics, 33(1), 24 32.
Delarue, Erik, De Jonghe, Cedric, Belmans, Ronnie, & D’haeseleer, William. 2011. Applying portfolio theory to the electricity sector: Energy versus power. Energy Economics, 33(1), 12 23.
Di Zio, Marco, Guarnera, Ugo, & Rocci, Roberto. 2007. A mixture of mixture models for a classification problem: The unity measure error. Computational statistics & data analysis, 51(5), 2573 2585.
Draper, Norman R, & Pukelsheim, Friedrich. 1999. Kiefer ordering of simplex designs for first-and second-degree mixture models. Journal of statistical planning and inference, 79(2), 325 348.
Duineveld, CAA, Smilde, AK, & Doornbos, DA. 1993. Designs for mixture and process variables applied in Tabelat formulations. Analytica chimica acta, 277(2), 455 465.
Efron, Bradley. 1979. Bootstrap methods: another look at the jackknife. The annals of Statistics, 1 26.
Efron, Bradley, & Tibshirani, Robert J. 1994. An introduction to the bootstrap. Vol. 57. CRC press.
Eriksson, Lennart, Johansson, Erik, & Wikstr m, Conny. 1998. Mixture design design generation, PLS analysis, and model usage. Chemometrics and Intelligent Laboratory Systems, 43(1), 1 24.
Gozálvez-Zafrilla, JM, Santafé-Moros, A, & García-Díaz, J Carlos. 2013. Crossed mixture process design approach to model nano filtration rejection for non-dilute multi-ionic solutions in a given range of solution compositions. Desalination, 315, 61 69.
Granger, Clive William John, & Newbold, Paul. 1977. Forecasting economic time series. Economic Theory and Mathematical Economics (USA).
Henderson, A. Ralph. 2005. The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. Clinica Chimica Acta, 359(1), 1 26.
Kang, Lulu, Roshan Joseph, V, & Brenneman, William A. 2011. Design and modeling strategies for mixture-of-mixtures experiments. Technometrics, 53(2), 125 136.
Kennedy, John J, & Bush, Andrew J. 1985. An introduction to the design and analysis of experiments in behavioral research. University Press of America.
Li, Duan, & Ng, Wan-Lung. 2000. Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Mathematical Finance, 10(3), 387 406.
Lonni, Audrey Alesandra Stinghen Garcia, Longhini, Renata, Lopes, Gisely Cristiny, de Mello, João Carlos Palazzo, & Scarminio, Ieda Spacino. 2012. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua. Analytica chimica acta, 719, 57 60.
Mage, Ingrid, & Naes, Tormod. 2005. Split-plot design for mixture experiments with process variables: A comparison of design strategies. Chemometrics and intelligent laboratory systems, 78(1), 81 95.
Markowitz, Harry. 1952. Portfolio selection*. The journal of finance, 7(1), 77 91.
Markowitz, Harry. 1959. Portfolio selection: efficient diversification of investments. New York.
Mayers, David. 1974. Portfolio theory, job choice and the equilibrium structure of expected wages. Journal of Financial Economics, 1(1), 23 42.
Mazaheri Tehrani, Mostafa, Saadatmand Tarzjan, Mahdi, et al. 2012. Optimization of low-cholesterolelow-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocolloids, 28.
Newbold, Paul, Carlson, William, & Thorne, Betty. 2012. Statistics for Business and Economics. Pearson Higher Ed.
Ngun, Bun Kim, Mohamad, Hasmaliza, Katsumata, Ken-ichi, Okada, Kiyoshi, & Ahmad, Zainal Ari n. 2014. Using design of mixture experiments to optimize triaxial ceramic tile compositions incorporating Cambodian clays. Applied Clay Science, 87, 97 107.
Piepel, Greg F. 1999. Modeling methods for mixture-of-mixtures experiments applied to a Tabelat formulation problem. Pharmaceutical development and technology, 4(4), 593 606.
Scheffé Henry. 1958. Experiments with mixtures. Journal of the Royal Statistical Society. Series B (Methodological), 344 360.
Scheffé, Henry. 1963. The simplex-centroid design for experiments with mixtures. Journal of the Royal Statistical Society. Series B (Methodological), 235 263.
Shalit, Haim, & Yitzhaki, Shlomo. 1984. Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets. The Journal of Finance, 39(5), 1449 1468.
Trippi, Robert R. 1989. A decision support system for real estate investment portfolio management. Information & Management, 16(1), 47 54.
Vieira, Antonio Fernando de Castro, & Dal Bello, Luiz Henrique Abreu. 2006. Experimentos com mistura para otimiza ªo de processos: uma aplicação com respostas não normais. Pesquisa Operacional, 26(3), 605 623.
Wehrens, Ron, Putter, Hein, & Buydens, Lutgarde. 2000. The bootstrap: a tutorial. Chemometrics and intelligent laboratory systems, 54(1), 35 52.
Wolfinger, Russell D, & Lin, Xihong. 1997. Two Taylor-series approximation methods for nonlinear mixed models. Computational statistics & data analysis, 25(4), 465 490.
Yu, Mei, Wang, Shou-Yang, Lai, Kin Keung, & Chao, X. 2005. Multiperiod portfolio selection on a minimax rule. Dynamics of continuos discrete and impulsive systems series B, 12(4), 565.
Zhang, Chongqi, & Wong, Weng Kee. 2013. Optimal designs for mixture models with amount constraints. Statistics & Probability Letters, 83(1), 196 202.
Zhang, Wei-Guo, Liu, Yong-Jun, & Xu, Wei-Jun. 2012. A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs. European Journal of Operational Research, 222(2), 341 349.