PROJETO DE EXPERIMENTOS DE MISTURAS GENERALIZADO PARA OTIMIZAÇÃO DE PORTFÓLIOS
Palavras-chave:
Otimização, Portifólio, DOE, MDE, Experimento de MisturasResumo
Uma das principais preocupações no que se refere a investimentos é a análise de portfólio. Na seleção de uma carteira, o analista deve estar atento à presença de parâmetros de erros de nas suas estimações. Com efeito, tais erros podem levar a um mau desempenho da carteira. A literatura propõe muitas abordagens para analisar as carteiras; uma alternativa interessante foi proposta por Oliveira e seus colegas: design de experimentos com misturas. Este trabalho generaliza a filosofia de projetos de experimentos na análise de portfólio e explora o poder dos projetos experimentais para lidar com os erros de parâmetro estimativos. A abordagem proposta neste artigo conecta - via função desirability – a tradicional teoria de portfólios média-variância com a otimização multi-objetivo. A abordagem lida com erros na estimação de parâmetros e permite que o analista se envolva em um processo de tomada de decisão robusta.
Referências
Artzner, P., Delbaen, F., Eber, J., Haeth, D., 1999. Coherent measures of risk. Mathematical Finance 9 (3), 203–228.
Abdelaziz, F.B., Aouni, B., Fayedh, R.E., 2007. Multi-objective stochastic programming for portfolio selection. European Jour-nal of Operational Research 177, 1811–1823
Bai, Z.D., Liu, H.X., Wong, W.K., 2009. Enhancement of the Applicability of Markowitz's Portfolio Optimization by Utilizing Random Matrix Theory. Mathematical Finance 19(4), 639-667.
Ben-Tal, A., and Nemirovski, A., 1998. Robust Convex Programming, Mathematics and Operations Research, Vol. 23, pp. 769–805.
Benati, S., Rizzi, R., 2007. A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio prob-lem, European Journal of Operational Research 176 423–434.
Bera, A. K., Park, S. Y., 2008. Optimal Portfolio Diversification Using the Maximum Entropy Principle. Econometric Reviews, 27, 484-512.
Best, M.J., Grauer, R.R., 1991. On the sensitivity of mean–variance-efficient portfolios to changes in asset means: some analyti-cal and computational results. Review of Financial Studies 4, 315–342.
Best, M.J., 2010. Portfolio Optimization, Chapman & Hall / CRC Finance, New York.
Best, M.J., Zhang, X., 2011. Degeneracy Resolution for Billinear Utility Functions. Journal of Optimization theory and Applica-tions, 150, 615-634.
Best, M. J., Hlouskova, J., 2003. Portfolio Selection and Transactions Cost. Computational Optimization and Applications, 24, 95-116.
Best, M. J., Hlouskova, J., 2005. An Algorithm for Portfolio Optimization with Transactions Cost. Management Science, 51 1676-1688.
Branke, J., B. Scheckenbach, B, Stein, M., Deb, K., Schmeck, H, 2009. Portfolio optimization with an envelope-based multi-objective evolutionary algorithm, European Journal of Operational Research 199, 684–693.
Briec, W., Kerstens, K., Jokung, O., 2007. Mean–variance–skewness portfolio performance gauging: A general shortage func-tion and dual approach. Management Science 53, 135–149.
Brown, D.B and Smith, J. E., 2011. Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds, Man-agement Science 57:1752-1770
Cornell, J.A., 2002. Experiments with Mixtures: Design, Models, and the Analysis of Mixture Data. New York.
Efron, B., 1979. Bootstrap methods: another look at jackknife. The Annals of Statistics, 7, 1-26.
Goldfarb, D. and Iyengar, G., 2003. Robust Portfolio Selection Problems, Mathematics and Operations Research, 28 (1), 1-38.
Gondzio, J., Grothey, A., 2007. Solving non-linear portfolio optimization problems with the primal-dual interior point method, European Journal of Operational Research 181 1019–1029.
Grubb, M., Butler, L., Twomey, P., 2006. Diversity and security in UK electricity generation: The influence of low-carbon ob-jectives. Energy Policy, 34, 4050-4062.
Halldórsson, B.V., and Tutuncu, R.H., 2003. An Interior-Point Method for a Class of Saddle-Point Problems. Journal of Optimi-zation Theory and Applications. 116 (3) 559-590.
Hickey, E. A., Carlson, J. L., Loomis, D., 2010. Issues in the determination of the optimal portfolio of electricity supply options. Energy Policy, 38, 2198-2207.
Janal, P., Roy, T. K., Mazumder, S. K., 2007. Multi-objective Mean-variance-skewness model for Portfolio Optimization. Ad-vanced Modeling and Optimization, 9, 181-193.
Jobson, J.D., Korkie, B., 1980. Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association 75, 544–554.
Kerstens, K., Mounir, A. Woestyne, I.V., 2011. Geometric representation of the mean–variance–skewness portfolio frontier based upon the shortage function. European Journal of Operational Research 210, 81–94.
Krokhmal, P., Zabarankin, M., Uryasev, S., 2011. Modeling and optimization of risk. Surveys in Operations Research and Man-agement Science, 16, 49-66.
Lai, K.K., Yu, L., Wang, S., 2006. Mean-variance–skewness–Kurtosis-based portfolio optimization. IEEE First International Multi-Symposium on Computer and Computational Sciences.
Lim, A. E.B., Shanthikumar, J. G., Vahn, G.-Y., 2011. Conditional value-at-risk in portfolio optimization: Coherent but fragile. Operations Research Letters 39, 163–171.
Lin, C.C., Liu, Y.T. 2008. Genetic algorithms for portfolio selection problems with minimum transaction lots. European Journal of Operational Research, 185, 393–404.
Markowitz, H., 1952. Portfolio selection. Journal of Finance 7, 77–91.
Markowitz, H., 1959. Portfolio Selection: Efficient Diversification of Investments. Wiley, New York.
Montgomery, D. C., 2009. Design and Analysis of Experiments, 7th Edition, John Wiley & Sons, Inc, 656 p.
Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology, 2nd ed. Wiley, New York.
Oliveira, F. A., Paiva, A. P., Lima, J. W. M., Balestrassi, P. P., Mendes, R. R. A., 2011. Portfolio optimization using Mixture Design of Experiments: Scheduling trades within electricity markets. Energy Economics, Volume 33, 24-32.
Piepel, G.F., 1988. Programs for generating extreme vertices and centroids of linearity constrained experimental region. Journal of Quality Technology, 20, 120-139.
Rockafellar R, Uryasev S. Conditional value-at-risk for general loss distributions. Journal of Banking and Finance 2002;26:1443–71.
Scheffé, H., 1958. Experiments with Mixtures, Journal of Royal Statistical Society. Series B, 20, 344-360.
Stirling, A., 1994. Diversity and ignorance in electricity supply investment. Energy Policy, 22, 195-216.
Soyer R., Tanyeri, K., 2006. Bayesian portfolio selection with multi-variate random variance models. European Journal of Oper-ational Research, 171, 977–990.
Zhang, W.G., Zhang, X.L., Xiao, W.L., 2009. Portfolio selection under possibilistic mean–variance utility and a SMO algorithm, European Journal of Operational Research 197, 693–700.
Zhang, W.G., Liu, Y.J., Xu, W.J., 2012. Portfolio selection under possibilistic mean–semivariance-entropy model for multi-period portfolio selection with transaction costs, European Journal of Operational Research 222, 341-349.