ANÁLISE DE VIABILIDADE ESTRUTURAL E FINANCEIRA PARA A TROCA DE PEÇAS USINADAS POR IMPRESSAS EM UM DISPOSITIVO DE RETROVISÃO

Authors

Keywords:

Impressão 3D, Processos de Usinagem, Prototipagem, Testes Vibracionais

Abstract

O presente trabalho tem como objetivo analisar as diferenças entre os processos de usinagem e impressão 3D na fabricação de peças utilizadas no suporte de espelhos retrovisores. A justificativa para o desenvolvimento desse estudo reside na evolução tecnológica e na possibilidade de redução significativa de custos. A área de estudo concentra-se na análise de vibrações, utilizando recursos de manufatura aditiva, usinagem e o método de elementos finitos. O objetivo principal é avaliar a viabilidade e compreender os possíveis benefícios decorrentes da alteração do processo de fabricação, por meio de uma série de testes envolvendo simulações. Em parceria com uma empresa líder no desenvolvimento e mercado de retrovisores, e com embasamento teórico através de referências bibliográficas, tornou-se possível realizar o estudo e avaliar a implementação da impressão 3D na produção de peças de custo elevado. Estima-se um ganho mínimo de 50,00% em termos de viabilidade econômica, além de uma variação dimensional controlada, evitando deslocamentos significativos.

Author Biography

  • Pedro Jose Papandrea, Brasil Educação S/A

    Post-Doctorate PDJ CNPq, Ph.D. in Production Engineering from the Federal University of Itajubá and University of Tennessee (University of Tennessee, Knoxville), USA in the PDSE CAPES modality (2018). Master in Production Engineering from the Federal University of Itajubá (2013). Post-graduated in Production Engineering from the Federal University of Itajubá in Quality and Productivity (2011). Bachelor of Business Administration from the Faculty of Administration and Informatics of Santa Rita do Sapucaí (2005). Professor and consultant in Production Engineering and Business Administration. Black Belt Lean Six Sigma. Bachelor of Science in Accounting from Universidade Cidade de São Paulo (SP). Graduating in Industrial Production Management from the University of the City of São Paulo (SP).

References

AVITABILE, Peter. Experimental modal analysis. Sound and vibration, v. 35, n. 1, p. 20-31, 2001.

BEAMAN, Joseph J. et al. Additive/subtractive manufacturing research and development in Europe. World Technology Evaluation Center Inc Baltimore MD, 2004.

CREATWIT 3D. Piocreat FGF Pellet 3D Printer G5, 2022. Disponível em: https://www.creatwit3d.com/product-detail/fgf-particle-3d-printer-g5. Acesso em: 03 nov. 2022.

FORMICA, Giovanni; LACARBONARA, Walter; ALESSI, Roberto. Vibrations of carbon nanotube-reinforced composites. Journal of sound and vibration, v. 329, n. 10, p. 1875-1889, 2010.

GARDNER, John M. et al. 3-D printing of multifunctional carbon nanotube yarn reinforced components. Additive Manufacturing, v. 12, p. 38-44, 2016.

GOG, Martina. Case study research. International Journal of Sales, Retailing & Marketing, v. 4, n. 9, p. 33-41, 2015.

HASELHUHN, Amberlee S. et al. Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing. Materials Science and Engineering: A, v. 673, p. 511-523, 2016.

HE, Qinghao et al. 3D printed continuous CF/PA6 composites: Effect of microscopic voids on mechanical performance. Composites science and technology, v. 191, 2020.

IBACH, H.; BRUCHMANN, H. D.; WAGNER, H. Vibrational study of the initial stages of the oxidation of Si (111) and Si (100) surfaces. Applied Physics A, v. 29, n. 3, p. 113-124, 1982.

KENNEY, Michael E. Cost Reduction through the Use of Additive Manufacturing (3D Printing) and Collaborative Product Lifecycle Management Technologies to Enhance the Navy's Maintenance Programs. Naval Postgraduate School Monterey CA Graduate School of Operational and Information Sciences, 2013.

FU, Kun et al. Progress in 3D printing of carbon materials for energy‐related applications. Advanced materials, v. 29, n. 9, p. 1603486, 2017.

LI, Aijun et al. Optimization method to fabrication orientation of parts in fused deposition modeling rapid prototyping. In: 2010 International conference on mechanic automation and control engineering. IEEE, 2010. p. 416-419.

LI, J.; XIA, Y. C. The friction and wear properties of thermoplastic PA6 composites filled with carbon fiber. Journal of thermoplastic composite materials, v. 23, n. 3, p. 337-349, 2010.

LIAN, Y.-Y. et al. Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications. Computer Physics Communications, v. 175, n. 11-12, p. 721-737, 2006.

LIANG, Jicai et al. Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites. Journal of Thermal Analysis and Calorimetry, v. 115, n. 1, p. 209-218, 2014.

KOMOROSKI, Christine L. Reducing Cycle Time and Increasing Value through the Application of KVA Methodology to the US Navy Shipyard Planning Process. Acquisition Research Program, 2005.

MUNEER, Waqas et al. Comparative study of microstructure and mechanical properties using a novel filler rod ER 4943 and autogenously butt welded joint during laser welding of AA 6061-T6 in 1G position. Modern Physics Letters B, 2022.

PIOCREAT. G5 Industrial FGF Pellets 3D Printer, Granular 3D Printer – Piocreat, 2021. Disponível em: https://www.piocreat3d.com/product-18.html. Acesso em: 30 out. 2022.

RAMU, I.; MOHANTY, S. C. Study on free vibration analysis of rectangular plate structures using finite element method. Procedia engineering, v. 38, p. 2758-2766, 2012.

SAUER, Max James. Evaluation of the mechanical properties of 3D printed carbon fiber composites. South Dakota State University, 2018.

SCHUBERT, Carl; VAN LANGEVELD, Mark C.; DONOSO, Larry A. Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, v. 98, n. 2, p. 159-161, 2014.

SCHWARZ, Brian J.; RICHARDSON, Mark H. Experimental modal analysis. CSI Reliability week, v. 35, n. 1, p. 1-12, 1999.

SEAMAN, Nathan. The use of collaborative and three dimensional imaging technology to increase value in the SHIPMAIN environment of the Fleet Modernization Plan. Acquisition Research Program, 2007.

SINHA, Jyoti Kumar. Vibration analysis, instruments, and signal processing. Boca Raton: CRC press, 2015.

ŚWIDER, J.; MICHALSKI, P.; WSZOŁEK, G. Physical and geometrical data acquiring system for vibration analysis software. Journal of Materials Processing Technology, v. 164, p. 1444-1451, 2005.

QUILLARD, S. et al. Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B, v. 50, n. 17, p. 12496, 1994.

VIBRATION RESEARCH. The Basics of Setting Up A Vibration Test E-book, 2022. Disponível em: https://vibrationresearch.com/vibration-testing-setup-ebook/. Acesso em: 04 nov. 2022.

WOERN, Aubrey L. et al. Fused particle fabrication 3-D printing: Recycled materials’ optimization and mechanical properties. Materials, v. 11, n. 8, p. 1413, 2018.

WOERN, Aubrey L.; PEARCE, Joshua M. 3-D printable polymer pelletizer chopper for fused granular fabrication-based additive manufacturing. Inventions, v. 3, n. 4, p. 78, 2018.

Additional Files

Published

2023-12-01

How to Cite

ANÁLISE DE VIABILIDADE ESTRUTURAL E FINANCEIRA PARA A TROCA DE PEÇAS USINADAS POR IMPRESSAS EM UM DISPOSITIVO DE RETROVISÃO. (2023). Journal of Open Research, 4(1), e40. https://journals.stellata.com.br/jor/article/view/40