OPTIMIZATION METHODOLOGY WITH PRINCIPAL COMPONENT ANALYSIS APPLIED IN PORTFOLIO

SIMULATED RESULTS IN GREEN COMPANIES

Authors

Keywords:

principal components analysis, financial indicators, DOE, green companies, portfolio optimization, financial ratios, balance sheets

Abstract

This research objectives to develop mathematical models for risk-return that consider simultaneously the linear and non-linear effects of the invested proportions and features of green companies based on their balance sheets/annual reports indicators. The mixture design of experiments is combined with Ward clus-tered PCA process variables for selecting the most promising companies through generated financial indicators (General Multivariate Indicators method) from the green companies. The green companies are the object of study for this empirical research, they were gathered from Newsweek magazine rank. The pro-posed Clustered Multilevel Optimization method has showed to be more robust and efficient than the all-other tested methods in this research. That means greater security and less risk to the investor.

Author Biographies

  • Pedro Jose Papandrea, Universidade Federal de Alfenas - UNIFAL

    Post-Doctorate PDJ CNPq, Ph.D. in Production Engineering from the Federal University of Itajubá and University of Tennessee (University of Tennessee, Knoxville), USA in the PDSE CAPES modality (2018). Master in Production Engineering from the Federal University of Itajubá (2013). Post-graduated in Production Engineering from the Federal University of Itajubá in Quality and Productivity (2011). Bachelor of Business Administration from the Faculty of Administration and Informatics of Santa Rita do Sapucaí (2005). Professor and consultant in Production Engineering and Business Administration. Black Belt Lean Six Sigma. Bachelor of Science in Accounting from Universidade Cidade de São Paulo (SP). Graduating in Industrial Production Management from the University of the City of São Paulo (SP).

  • João Éderson Corrêa, Universidade Federal de Itajubá - UNIFEI

    Possui Doutorado e Mestrado pelo Programa de Pós Graduação em Engenharia de Produção da Universidade Federal de Itajubá, pós-graduado em: Administração Hospitalar pela rede São Camilo de Faculdades (2014), Administração Pública pela Faculdade SENAC - Minas (2010), MBA em Gestão de Negócios Empresariais (2007) e Graduação em Administração de Empresas pela Faculdade de Ciências Sociais Aplicadas do Sul de Minas (2005). Atua como professor nos cursos de graduação em Engenharia de Produção, Civil e Administração de Empresas e Pós-Graduação, atuando principalmente nos áreas: Qualidade, certificação ISO-9000 e acreditação hospitalar. Atualmente participa dos seguintes grupos de Pesquisas: Engenharia de Fatores Humanos e Usabilidade para dispositivos médicos e do grupo de Análise de Custo e Benefícios do Impacto Regulatório (Chamada MCTI/CNPQ N. 17/2017 ? Pesquisa e, Vigilância Sanitária).

  • Franco Bassi Rocha, Universidade Federal de Alfenas - UNIFAL

    É mestre em física e matemática aplicada pela Universidade Federal de Itajubá e Doutor em Engenharia Elétrica pela mesma Universidade. Tem interesse em pesquisas na área de otimização multiobjetivo.

References

Altman, E.I., 1968. The Prediction of Corporate Bankruptcy: A Discriminant Analysis. J. Finance 23, 193–194. doi:10.1111/j.1540-6261.1968.tb00843.x/pdf

Andersson, Ö., 2012. Experiment!: Planning, Implementing and Interpreting, Experiment!: Planning, Implementing and Interpreting. doi:10.1002/9781118311059

Bansal, Pratima; Roth, K., 2000. Why Companies Go Green : Responsiveness. Acad. Manag. 43, 717–736. doi:10.2307/1556363

Barua, S., Saha, A.K., 2015. Traditional Ratios vs . Cash Flow based Ratios : Which One is Better Performance Indicator ? Adv. Econ. Bus. 3, 232–251. doi:10.13189/aeb.2015.030605

Better, M., Glover, F., 2006. Selecting Project Portfolios by Optimizing Simulations. Eng. Econ. 51, 81–97. doi:10.1080/00137910600695593

Borges, C.N., Bruns, R.E., Almeida, A. a., Scarminio, I.S., 2007. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis. Anal. Chim. Acta. doi:10.1016/j.aca.2007.02.067

Brandvik, P.J., Daling, P.S., 1998. Optimisation of oil spill dispersant composition by mixture design and response surface methods. Chemom. Intell. Lab. Syst. 42, 63–72. doi:10.1016/S0169-7439(98)00009-4

Byers, S.S., Groth, J.C., Sakao, T., 2015. Using portfolio theory to improve resource efficiency of invested capital. J. Clean. Prod. 98, 156–165. doi:10.1016/j.jclepro.2013.11.014

Cornell, J.A., Ramsey, P.J., 1997. Modeling the Component Linear and Nonlinear Blending Properties in a Two-Stage Mixture Experiment. Nonlinear Anal. Theory, Methods Appl. 30, 4041–4050.

Cornell, J. a., 1971. Process Variables in the Mixture Problem for Categorized Components. J. Am. Stat. Assoc. 66, 42. doi:10.2307/2284844

de Oliveira, F.A., de Paiva, A.P., Lima, J.W.M., Balestrassi, P.P., Mendes, R.R.A., 2011. Portfolio optimization using Mixture Design of Experiments: Scheduling trades within electricity markets. Energy Econ. 33, 24–32. doi:10.1016/j.eneco.2010.09.008

Delarue, E., De Jonghe, C., Belmans, R., D’haeseleer, W., 2011. Applying portfolio theory to the electricity sector: Energy versus power. Energy Econ. 33, 12–23. doi:10.1016/j.eneco.2010.05.003

Di Zio, M., Guarnera, U., Rocci, R., 2007. A mixture of mixture models for a classification problem: The unity measure error. Comput. Stat. Data Anal. 51, 2573–2585. doi:10.1016/j.csda.2006.01.001

Draper, N.R., Pukelsheim, F., 1998. Mixture models based on homogeneous polynomials. J. Stat. Plan. Inference 71, 303–311. doi:10.1016/S0378-3758(98)00012-3

Gabriel, S.C., Baker, C.B., 1980. Concepts of Business and Financial Risk. Am. J. Agric. Econ. 62, 560–564. doi:10.2307/1240215

Gozálvez-Zafrilla, J.M., Santafé-Moros, a., García-Díaz, J.C., 2013. Crossed mixture-process design approach to model nanofiltration rejection for non-dilute multi-ionic solutions in a given range of solution compositions. Desalination 315, 61–69. doi:10.1016/j.desal.2012.08.009

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441. doi:10.1037/h0071325

Johnson, M., 2002. Waveform based clustering and classification of AE transients in composite laminates using principal component analysis. NDT E Int. 35, 367–376. doi:10.1016/S0963-8695(02)00004-X

Jolliffe, I.T., 2002. Principal Component Analysis, Second Edition, Encyclopedia of Statistics in Behavioral Science. doi:10.2307/1270093

Kang, L., Joseph, V.R., Brenneman, W. a, 2011. Design and Analysis of Mixture-of-Mixture Experiments. Technometrics 53, 125–136.

Li, D., Ng, W.-L., 2000. Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Math. Financ. 10, 387–406. doi:10.1111/1467-9965.00100

Lonni, A.A.S.G., Longhini, R., Lopes, G.C., De Mello, J.C.P., Scarminio, I.S., 2012. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua. Anal. Chim. Acta 719, 57–60. doi:10.1016/j.aca.2011.12.053

Lyon, T., Shimshack, J., 2012. Environmental Disclosure: Evidence From Newsweek’s Green Companies Rankings, Business & Society. doi:10.1177/0007650312439701

Måge, I., Næs, T., 2005. Split-plot design for mixture experiments with process variables: A comparison of design strategies. Chemom. Intell. Lab. Syst. 78, 81–95. doi:10.1016/j.chemolab.2004.12.010

Markowitz, H., 1952. Portfolio Selection*. J. Finance 7, 77–91. doi:10.1111/j.1540-6261.1952.tb01525.x

Misturas, E. De, 2008. Scheffe (1958) considera experimentos com misturas aqueles cujas propriedades estudadas são dependentes das proporções dos componentes presentes na sua composição, mas não necessariamente do montante da mistura. Em uma mistura de q componentes ( q ≥ 3) co 1–11.

Montgomery, D.C., 2012. Design and Analysis of Experiments, eight. ed. John Wiley & Sons, Inc., New York, United States of America.

Ngun, B.K., Mohamad, H., Katsumata, K.I., Okada, K., Ahmad, Z.A., 2014. Using design of mixture experiments to optimize triaxial ceramic tile compositions incorporating Cambodian clays. Appl. Clay Sci. 87, 97–107. doi:10.1016/j.clay.2013.11.037

Nikzade, V., Tehrani, M.M., Saadatmand-Tarzjan, M., 2012. Optimization of low-cholesterol-low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocoll. 28, 344–352. doi:10.1016/j.foodhyd.2011.12.023

Papandrea, P., Paiva, A., 2016a. Monthly quotation of twenty green companies. Mendeley Data. doi:10.17632/ccpzrpz4xk.2

Papandrea, P., Paiva, A., 2016b. Replication of the monthly quotation. doi:10.17632/vjsmh4b7zt.2

Papandrea, P., Paiva, A., 2016c. Functions and optimization of portfolio of Green companies. doi:10.17632/ggyzww74b2.2

Papandrea, P., Paiva, A., 2016d. Design of experiment sheets of Green Companies. doi:10.17632/9kvzx7k5yh.2

Papandrea, P., Paiva, A., Leme, R., 2016. The PCA applied into the Newsweek Green Companies Ranking of 2014. Mendeley Data 1. doi:10.17632/CPVR7GDY9R.1

Papandrea Pedro, Anderson, P., 2016. PCA applied on calculated financial indicators and quotations analysis. doi:10.17632/s2kny3549v.2

Piepel, G.F., 1999. Modeling methods for mixture-of-mixtures experiments applied to a tablet formulation problem. Pharm. Dev. Technol. 4, 593–606. doi:10.1081/PDT-100101398

Puntanen, S., 2013. Methods of Multivariate Analysis, Third Edition by Alvin C. Rencher, William F. Christensen. Int. Stat. Rev. 81, 328–329. doi:10.1111/insr.12020_20

Saha, M., Darnton, G., 2005. Green Companies or Green Con-panies: Are Companies Really Green, or Are They Pretending to Be? Bus. Soc. Rev. 110, 117–157. doi:10.1111/j.0045-3609.2005.00007.x

Scheffé, H., 1963. The Simplex-Centroid Design for Experiments with Mixtures. J. R. Stat. Soc. 25, 235–263.

Shalit, H., Yitzhaki, S., 1984. Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets. J. Finance 39, 1449–1468. doi:10.2307/2327737

Trippi, R.R., 1989. A decision support system for real estate investment portfolio management. Inf. Manag. 16, 47–54. doi:10.1016/0378-7206(89)90026-8

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. doi:10.1080/01621459.1963.10500845

Yu, M., Wang, S., Lai, K.K., Chao, X., 2005. Multiperiod Portfolio Selection on a Minimax Rule 12, 565–587.

Zhang, W.G., Liu, Y.J., Xu, W.J., 2012. A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs. Eur. J. Oper. Res. 222, 341–349. doi:10.1016/j.ejor.2012.04.023

Additional Files

Published

2021-07-28

How to Cite

OPTIMIZATION METHODOLOGY WITH PRINCIPAL COMPONENT ANALYSIS APPLIED IN PORTFOLIO: SIMULATED RESULTS IN GREEN COMPANIES. (2021). Journal of Open Research, 2(1), e35. https://journals.stellata.com.br/jor/article/view/35