

JOR JOURNAL OF OPEN RESEARCH

OTIMIZAÇÃO DE ROTAS VISANDO A REDUÇÃO DE CUSTOS DE OPERAÇÃO DA COLETA DE RESÍDUOS SÓLIDOS REALIZADA NO SUL DE MINAS GERAIS

Juliana Helena Daroz Gaudêncio*a, Thiago Pouza Mussolinia, Gustavo Pereira Olímpio b.

- ^a Universidade Federal de Itajubá, Instituto de Engenharia de Produção e Gestão, UNIFEI, Itajubá MG
- ^b Centro de Ensino Superior em Gestão, Tecnologia e Educação FAI, Santa Rita do Sapucaí MG

RESUMO

Os resíduos sólidos, na sua maioria, são descartados em aterros sanitários ou de forma irregular podendo causar o surgimento de doenças e, assim, afetando a população e o meio ambiente. Como medidas para amenizar este impacto, torna-se necessário a implantação de um sistema de coleta seletiva de resíduos de forma eficaz. Por lei federal, é de responsabilidade dos municípios implantar mecanismos capazes de reduzir a degradação ambiental, entretanto, os altos custos para o tratamento adequado dos resíduos produzidos impactam de forma significativa nos cofres públicos. Por esta razão, aliar técnicas de otimização de rotas com o problema existente em diversas prefeituras pode representar um meio viável para a redução de custos aonde o tempo de deslocamento dos veículos utilizados na coleta seletiva será otimizado e, assim, tendo um maior aproveitamento na execução dos serviços realizado pelas prefeituras. Desse modo, o objetivo destre trabalho é o de utilizar a pesquisa operacional como uma ferramenta que visa a otimização das rotas utilizadas para a coleta de resíduos sólidos na cidade de Santa Rita do Sapucaí / MG. Assim sendo, a redução de custos obtida na rota dos resíduos sólidos proporcionará recursos que poderão ser investidos na implementação na coleta seletiva na cidade e, assim, auxiliando a prefeitura no tratamento dos resíduos gerados pela população.

PALAVRAS-CHAVE:

coleta de resíduos, coleta seletiva, otimização de rotas, minimização de custos.

INTRODUÇÃO

Os resíduos sólidos são responsáveis por uma grande variedade de gases estufa, desde gases carbono (como o monóxido de carbono, o dióxido de carbono e o metano), passando elementos causadores das chuvas ácidas, como o enxofre, por exemplo, até os perigosos resíduos nucleares que ainda continuam sendo largados no ambiente sem tratamento em diversos países. Para esses acontecimentos temos a contribuição efetiva tanto dos resíduos domésticos e comerciais, como dos resíduos industriais. A falta de locais para o descarte em cidades pequenas não é o único problema, pois a origem do problema está na geração e no gerenciamento destes resíduos. A maior parte da indústria ainda não adequou os seus processos para a redução e o reaproveitamento de materiais (Alkmim, 2015). A reutilização ajuda na gestão dos resíduos sólidos, pois reaproveita um material que seria descartado e, assim, evitando uma nova produção e reduzindo a exploração de recursos naturais.

Como medidas para amenizar este impacto, torna-se necessário a implantação de um sistema de coleta seletiva de resíduos de forma eficaz. Entretanto, os altos custos para o tratamento adequado dos resíduos produzidos impactam de forma significativa nos

cofres públicos. Por esta razão, esse trabalho possui o objetivo de desenvolver um projeto para o gerenciamento de resíduos sólidos na qual são utilizadas ténicas da pesquisa operacional que visam a otimização das rotas já existentes no município de Santa Rita do Sapucaí localizada no sul de Minas Gerais. Visando a redução de custos nas rotas existentes da coleta de resíduos sólidos, surge uma alternativa para a administração municipal gerenciar a implantação da coleta seletiva inexistente na cidade até o momento.

Para desenvolver tal trabalho, pesquisas sobre o atual destino dos resíduos e maneiras de melhorá-lo, juntamente com as técnicas de pesquisa operacional que visam a otimização de rotas foram utilizados na proposta para solucionar e viabilizar o melhor gerenciamento dos resíduos gerados pela cidade objeto de estudo.

MATERIAIS E MÉTODOS

Pesquisa operacional

De acordo com Andrade (1998), os primeiros trabalhos de pesquisa operacional serviram de apoio para as operações militares inglesas durante a Segunda Guerra Mundial e após, usada pela Engenharia de Produção como método de resolução de problemas por meio da elaboração de modelos que permitem simulações e servem de suporte para as decisões. Hoje ela está tanto na comunidade acadêmica quanto nas organizações (SILVA et. al, 1998).

A programação linear é a distribuição eficiente de recursos limitados entre atividades competitivas com a finalidade de atender um determinado objetivo, por exemplo, a maximização de lucros ou a minimização dos custos, entretanto, deseja-se achar aquela distribuição que satisfaça as restrições do problema e alcance o objetivo desejado. A essa solução dá-se o nome de solução ótima (PUCCINI,1980).

Como as variáveis de decisão do modelo proposto, neste trabalho, serão a quantidade de vezes que cada rota será atendida, restringe-se o modelo para que as variáveis assumam apenas valores inteiros. Essa técnica é chamada de programação linear inteira (LACHTERMACHER, 2007).

De acordo com o algoritmo proposto por George Dantzig em 1947, o Simplex soluciona problemas de equações e inequações lineares através de uma sequência de passos otimizando a função objetivo (GOLDBARG e LUNA, 2000).

Otimização de rotas

Segundo LACHTERMACHER (2007), o problema de transporte é de aplicação muito comum na pesquisa operacional e recebe esse nome porque seu método de resolução foi, no início, utilizado para determinar o menor custo de transporte por unidade de remessa.

O roteiro é feito a partir de uma origem e destino, sendo necessária uma série de análises para verificar a viabilidade do percurso devido ao volume de carga, locais de coleta e tempo disponível para executar o serviço. Alvarenga e Novaes (2000) atribuem a roteirização o processo de distribuição física de produtos em um roteiro de coleta e entrega em que o veículo visita certo número de clientes localizados em uma determinada zona.

Metodologia de pesquisa

Os diversos tipos de pesquisas podem ser classificadas quanto a sua abordagem, natureza, objetivos e procedimentos (Silveira e Córdova, 2009). Em relação à abordagem esse trabalho classifica-se como uma pesquisa quantitativa visto que há o uso de funções para a modelagem de dados quantitativos recorrendo à linguagem matemática para descrever as rotas utilizadas pela coleta de resíduos sólidos.

Sob o ponto de vista da natureza, essa pesquisa pode ser classificada como aplicada uma vez que objetiva gerar conhecimento para fins práticos. Assim, a pesquisa visa o aperfeiçoamento de questões práticas e atende aos interesses da administração pública na redução dos custos e a comunidade acadêmica na promoção de novos métodos e estudos.

Quanto à ótica dos objetivos, a pesquisa classifica-se como de classe axiomática normativa, pois utiliza o modelo matemático criado com o propósito de otimizá-lo por meio da pesquisa operacional. De acordo com Bertrand e Fransoo (2002), a pesquisa

normativa está interessada na melhoria dos resultados disponíveis na literatura, buscando a determinação de uma solução ótima diante de definições de novos problemas.

Por fim, sob a ótica dos procedimentos, essa pesquisa se enquadra no método de pesquisa denominado 'modelagem e simulação' uma vez que os dados analisados serão modelados e otimizados por meio de procedimentos matemáticos.

Desenvolvimento da pesquisa

Plano de gerenciamento de resíduos sólidos

Os resíduos sólidos urbanos coletados na cidade de Santa Rita do Sapucaí/MG passam por operação de transbordo em área licenciada situada próximo às margens da Rodovia BR 459 aonde está localizada a Fazenda da Prefeitura. Após, o encaminhamento dos resíduos é realizado através da utilização de caminhão caçamba de maior volume até ao Aterro Sanitário do Consórcio CIMASAS localizado na cidade de Itajubá-MG. Devido a este encaminhamento para a CIMASAS, a prefeitura tem um custo muito alto no deslocamento destes resíduos, cerca de 60 a 70 mil reais por mês, além de ter um custo de oportunidade aonde o município deixa de obter lucro com a venda de materiais potencialmente recicláveis.

De acordo com os dados coletados, a coleta convencional na zona urbana possui roteiros definidos. Na Tabela 1 estão descritos os itinerários seguidos em cada roteiro. Normalmente, com a utilização de caminhões coletores, são executadas viagens nas rotas durante a semana.

Em média são coletadas 25 toneladas por dia e, assim, totalizando 750 toneladas por mês de resíduos sólidos gerados na cidade de Santa Rita do Sapucaí/MG que possui em torno de 42.000 habitantes.

Tabela 1 – Itinerário da coleta de resíduos sólidos realizado em Santa Rita do Sapucaí (PMGIRS – Santa Rita do Sapucaí, 2015)

Número da	Roteiro da	Euravân dia	Horário		
Rota	Rota (Bairros)	Frequência	Início	Fim	Descarga
Rota 1	Secretaria de Obras, Recanto das	Segunda a Sábado	07:00	11:00	12:00
	Margaridas, São Roque, São Benedito,				
	Santa Felicidade, São João, Pedro Sancho				
	Vilela, Conjunto Habitacional José,				
	Gonçalves Mendes, São José.				
Rota 2	Rua Nova, Vila das Fontes, Loteamento do	Segunda a Sábado	07:00	11:00	12:00
	Valle, Joaquim Gomes, Anchieta, Vila				
	Operária, Arco Iris, Novo Horizonte, Boa				
	Vista II, Jardim das Palmeiras, São Pedro,				
	Fernandes, Jardim Beira Rio.				
Rota 3	Bruno Matagrano, Ozório Machado, São	Segunda a Sábado	17:30	22:00	07:00
	José, Maristela.				
Rota 4	Fátima, Morada do Sol, Jardim dos	Segunda a Sábado	07:00	11:00	12:00
	Estados, Viana, Santana, Monte Belo,				
	Monte Líbano, Jairo Grillo, Monte Verde,				
	Jardim Santo Antônio, Santa Rita, Pôr-do-				
	Sol, Família Andrade, Pedreira.				
Rota 5	Inatel, Delcides Teles, Eletrônica, Centro.	Segunda a Sábado	17:30	22:00	07:00

RESULTADOS E DISCUSSÕES

Coleta de dados

Em uma pesquisa realizada em Santa Rita do Sapucaí sobre a composição dos resíduos sólidos urbanos do município, retrataram-

se os seguintes dados observados nas Figuras 1 e 2.

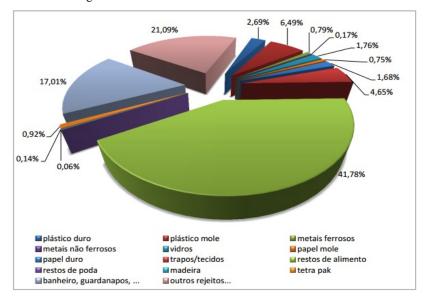


Figura 1 - Composição dos resíduos sólidos domésticos gerados em Santa Rita do Sapucaí

Conforme informado na Figura 1, a matéria orgânica representa 41,78% dos resíduos domésticos gerados no município, outros rejeitos somam 38,10% e os resíduos recicláveis representam 20,12% do total de resíduos domésticos. Já a Figura 2 informa que a quantidade de matéria orgânica é da ordem de 49,61% do total de resíduos. Os rejeitos são 18,61% e o material potencialmente reciclável representa 31,79% do total da amostra de resíduos comerciais. Para achar a base de cálculo foi feita a média aritmética dos valores encontrados sobre os resíduos que podem ser recicláveis informado nos dois gráficos e, desse modo, obteve-se o valor médio de 25,95%.

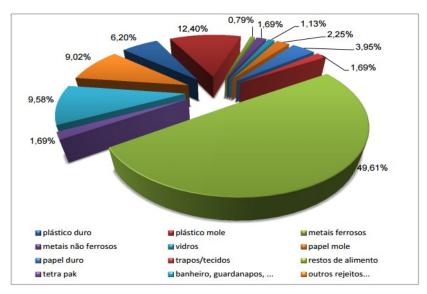


Figura 2 - Composição resíduos sólidos comerciais gerados em Santa Rita do Sapucaí

O montante mensal dos resíduos coletados na cidade é apresentado na Tabela 2. A partir desses dados foram calculados a quantidade potencial de material reciclável no município (25,95%) multiplicando os valores do volume total de lixo recolhido mês a mês por 0,2595.

Observa-se que no ano de 2015 a cidade produziu 1.927.545,24 kg de material potencialmente reciclável. A maior parte desse montante é destinada a uma empresa especializada em descartes de resíduos em Itajubá, chamada CIMASAS.

Para calcular o material reciclável de Santa Rita do Sapucaí, pesquisou-se a composição do material reciclável no Brasil que é composto basicamente por 5 itens sendo eles o aço, alumínio, papel, plástico e vidro (ABRELPE, 2009). Para obtenção dos

valores da receita perdida no município com a possível venda desses materiais, os preços de venda por tonelada e a proporção média encontrados em 15 capitais brasileiras foram pesquisados (VILHENA, 2018). Podemos observar na Tabela 3 o preço por tonelada e a proporção de cada material reciclável.

Tabela 2 - Quantidade total coletada de resíduos e o potencial de reciclagem (adaptado de PMGIRS – Santa Rita do Sapucaí, 2015).

	Montante (kg)	Reciclável	
Janeiro	881.220,00	228.676,59	
Fevereiro	709.830,00	184.200,89	
Março	578.000,00	149.991,00	
Abril	626.130,00	162.480,74	
Maio	593.580,00	154.034,01	
Junho	597.700,00	155.103,15	
Julho	550.120,00	142.756,14	
Agosto	573.000,00	148.693,50	
Setembro	578.810,00	150.201,20	
Outubro	558.990,00	145.057,91	
Novembro	564.120,00	146.389,14	
Dezembro	616.420,00	159.960,99	
Total	7.427.920	1.927.545,24	

Tabela 3 - Preço de venda/tonelada e proporção dos materiais reciclávei (adaptado de Vilhena, 2014).

Materiais	Aço	Alumínio	Papel	Plástico	Vidro
Preço de Venda Tonelada	R\$ 277,00	R\$ 2.471,00	R\$ 311,00	R\$ 788,00	R\$ 95,00
Proporção (%)	53,3	4,4	25,3	12,2	4,8

Na Tabela 4 observa-se a receita perdida com a possível venda de cada material. Verifica-se que a receita perdida no ano de 2015 foi de R\$837.564,67 se esse material fosse vendido para reciclagem.

Tabela 4 – Receita gereda com a venda dos materiais recicláveis.

Material	Receita (R\$)	
Aço	284.584,71	
Alumínio	209.570,43	
Papel	151.665,04	
Plástico	182.954,88	
Vidro	8.789,61	
Total	837.564,67	

Calculou-se a receita perdida proporcionalmente em cada rota utilizando a informação do número médio de moradores de cada bairro. Informações estas cedidas pela prefeitura de Santa Rita do Sapucaí. Esses dados estão representados na Tabela 5.

Tabela 5 - Receita perdida por rota.

Rotas	Número de Habitantes	Margem	Receita Desperdiçada
1	6156	15,11%	R\$ 126.556,02
2	10227	25,10%	R\$ 210.228,74
3	4269	10,48%	R\$ 87.776,78
4	10902	26,76%	R\$ 224.132,31
5	9186	22,55%	R\$ 188.870,84

As despesas com pessoal, manutenção e outras atividades se dividem igualmente entra todas as rotas. Portanto, a única despesa proporcional seria o valor gasto com combustível pelos caminhões para cumprir o percurso da rota. O custo do diesel para a prefeitura no ano de 2017 foi de **R\$3,17** e de posse dos dados geográficos das distâncias percorridas nas rotas encontrou-se o gasto proporcional com combustível.

Para chegar à receita desperdiçada na coleta diária de cada uma das rotas, dividiu-se o montante anual de receitas desperdiçadas por 360 (dias no ano, aproximadamente) e multiplicou-se pelo valor percentual de cada rota obtido na Tabela 5. A margem obtida em cada rota é encontrada subtraindo os gatos com o combustível conforme apresentado na Tabela 6.

Tabela 6 – Margem por rota.

Rotas	Distância (Km)	Combustível (R\$)	Receita (R\$)	Margem (R\$)
Rota 1	5,4	4,28	351,54	347,27
Rota 2	15,3	12,13	583,97	571,84
Rota 3	12,7	10,06	243,82	233,76
Rota 4	9,35	7,41	622,59	615,18
Rota 5	6,3	4,99	524,64	519,65

É importante observar as restrições quanto a capacidade dos caminhões durante a semana. Segundo Cempre (2018),a velocidade média de um caminhão durante a operação de coleta é de 7 a 12 Km/Hr, adotaremos 7 Km/Hr. A capacidade de volume dos caminhões compactadores que operam 6 dias por semana em Santa Rita do Sapucaí é de 12 m³ cada, e dos caminhões tipo caçamba 5 m³ cada.

Variáveis de decisão do modelo.

Foram definidas 5 variáveis de decisão, sendo elas a quantidade de vezes que cada rota será percorrida por semana:

Xi = Quantas vezes a rota i será percorrida por semana;

i = Rota (1,2,3,4,5)

Função objetivo

O objetivo do problema é maximizar o lucro obtido com a melhor rota de coletiva seletiva possível. A equação (1) mostra a função objetivo do problema:

$$Max Z = 347,27X_1 + 571,84X_2 + 233,76X_3 + 615,18X_4 + 519,65X_5$$
 (1)

Restrições do modelo

Na tabela 7 abaixo observa-se a distância percorrida e o volume coletado em cada rota, esses dados serão usados nas restrições do modelo.

Tabela 7: Distância percorrida e volume coletado em cada rota.

Rotas	Distância (Km)	Volume (Kg)	
Rota 1	5,4	351,54	
Rota 2	15,3	583,97	
Rota 3	12,7	243,82	
Rota 4	9,35	622,59	
Rota 5	6,3	524,64	

a) Distância máxima percorrida em cada rota por semana.

A velocidade média do caminhão é 7 km/hr (D'ALMEIDA E VILHENA,2000), em um dia de trabalho de 6 horas percorrese no máximo 42 km e em uma semana de 6 dias trabalhados, 1 caminhão percorre no máximo 252 km. Dessa forma as distâncias percorridas em cada rota devem ser menores ou iguais a 252 km.

$$5,4X_1 + 15,3X_2 + 12,7X_3 + 9,35X_4 + 6,3X_5 \le 252$$

b) Volume máximo coletado por rota.

Cada caminhão caçamba coleta até 5 m³ por vez. Com 2 caminhões o valor é de 10 m³, ou seja, 10000 Kg. Cada caminhão compactador coleta por vez até 12 m³, 2 caminhões 24000 Kg. Dessa forma, os volumes coletados devem ser menores ou iguais a 34000 Kg.

$$809,03X_1 + 1343,93X_2 + 561,13X_3 + 1432,81X_4 + 1207,39X_5 \le 34000$$

c) A capacidade máxima de atendimento a cada rota será de 12 vezes por semana e a capacidade mínima 6 vezes por semana. Ou seja, os valores das variáveis devem ser menores ou iguais a 12 e maiores ou iguais a 6.

$$X1, X2, X3, X4, X5 \le 12$$

$$X1, X2, X3, X4, X5 \ge 6$$

O número de vezes que os caminhões devem percorrer as rotas por semana deve ser um número inteiro, restringe-se a programação do software para Programação Linear Inteira.

Representação matemática do problema

Apresenta-se o modelo matemático da seguinte forma:

$$Max Z = 347,27X_1 + 571,84X_2 + 233,76X_3 + 615,18X_4 + 519,65X_5$$

Sujeito à:

$$\begin{aligned} 5,4X_1+15,3X_2+12,7X_3+9,35X_4+6,3X_5 &\leq 252 \\ 809,03X_1+1343,93X_2+561,13X_3+1432,81X_4+1207,39X_5 &\leq 34000 \\ X_1,X_2,X_3,X_4,X_5 &\leq 12 \\ X_1,X_2,X_3,X_4,X_5 &\geq 6 \end{aligned}$$

Análise dos resultados

O software usado para realizar os cálculos de programação linear inteira foi o suplemento Solver disponível no Microsoft Excel. Abaixo, na Tabela 8, são apresentados os dados na condição de 2 caminhões caçamba e mais 2 caminhões compactadores operando 6 horas por dia, 6 dias por semana:

Tabela 8 - Programação semanal.

Rotas	Margem	Distância (Km)	Volume (Kg)	Vezes Por Semana
Rota 1	347,27	5,4	809,03	8
Rota 2	571,84	15,3	1.343,93	6
Rota 3	233,76	12,7	561,13	6
Rota 4	615,18	9,35	1.432,8	6
Rota 5	519,65	6,3	1.207,39	6

Utilizando como base a margem de cada rota e como limites de restrição a distância percorrida e volume coletado observa-se na tabela acima a programação semanal ótima para coleta de resíduos sólidos em Santa Rita do Sapucaí em termos de lucro com a implantação de um sistema de coleta seletiva e reciclagem no próprio município. Na tabela 9 apresenta-se a receita desperdiçada em Santa Rita do Sapucaí por semana, por mês e por ano.

Tabela 9 - Solução da função objetivo.

Receita	Reais (R\$)	
Semana	14.420,74	
Mês	57.682,76	
Ano	692.195,52	

Na tabela 10 apresenta-se a capacidade utilizada de distância percorrida e volume coletado por dia. É importante observar que a capacidade máxima de volume dos 4 caminhões está quase preenchida totalmente e a capacidade de atendimento máximo de 12 vezes por semana ainda não foi alcançada.

Tabela 10 - Utilização do primeiro cenário.

Restrições				
Quilometragem	305,1	<=	1.008	Km
Volume	33.3743,8	<=	34.000	Kg
Atendimento Mínimo	6	>=	6	X Por Semana
Atendimento Máximo	8	<=	12	X Por Semana

Pode-se, através do modelo, simular o faturamento e as capacidades de utilização adicionando mais um caminhão compactador na operação totalizando uma capacidade máxima de volume de 46000 Kg. Nas duas próximas tabelas 11 e 12 apresenta-se a receita e a utilização da capacidade máxima na condição de três caminhões do tipo compactadores e dois caminhões do tipo caçamba operando diariamente.

Tabela 11- Solução da função objetivo no segundo cenário.

Receita	Reais (R\$)	
Semana	19.604,64	
Mês	78.418,56	
Ano	941.022,72	

Tabela 12 – Utilização do segundo cenário.

Restrições				
Quilometragem	413,35	<=	1.260	Km
Volume	45.871,30	<=	46.000	Kg
Atendimento Mínimo	6	>=	6	X Por Semana
Atendimento Máximo	12	<=	12	X Por Semana

Podemos observar que na segunda simulação a capacidade atual de volume está quase totalmente atingida e os atendimentos a cada rota, máximo e mínimo por semana foram alcançados. O faturamento teve um aumento de mais de 35%, igual a R\$248827,50.

Através da otimização das rotas pode-se elaborar vários cenários com restrições de diferentes limites de acordo com as condições atuais de operação da prefeitura e, principalmente, elaborar o planejamento da coleta seletiva já ciente de um faturamento operacional confiável.

CONCLUSÕES

A elaboração deste trabalho ressaltou a importância da utilização de técnicas de otimização que visam a redução de custos que a administração pública de Santa Rita do Sapucaí possui com a coleta de resíduos sólidos. A modelagem realizada demonstra uma solução viável para o problema apresentado.

Analisando o cenário de 5 caminhões, 3 compactadores e 2 caçambas, tem-se o faturamento de R\$941.022,72 anual e R\$78.418,56 mensal. Como a prefeitura não pode administrar essa receita propõe-se a criação de um centro de triagem, separação e venda de materiais potencialmente recicláveis em Santa Rita do Sapucaí. A prefeitura da cidade já possui um terreno destinado para essas operações. Ainda, com esta proposta, o envio de resíduos sólidos destinado a CIMASAS localizada na cidade de Itajubá irá diminuir e, assim, a administração pública teria uma redução nos gastos com o gerenciamento desses resíduos sólidos. Atualmente, a prefeitura gasta, em média, R\$65.000,00 reais por mês com o gerenciamento dos resíduos destinados para a cidade vizinha (Itajubá), entretanto, adotando a política da coleta seletiva, o montante de resíduos sólidos destinados à Itajubá irá diminuir e, assim, o novo gasto será de R\$48.132,45.

Desse modo, a implantação de um centro de triagem proporcionará uma redução de R\$202.410,50 por ano e, consequentemente, de R\$16.867,55 por mês na cidade de Santa Rita do Sapucaí, e, além disso, a cidade contribuirá com o meio ambiente e com o desenvolvimento social destinando esses materiais de forma correta conscientizando a população com bons exemplos de separação e reutilização de materiais.

Por fim, outra possibilidade de incentivo é a adesão da Lei nº 19.823, de 22 de novembro de 2011 que dispõe sobre a concessão de incentivo financeiro aos catadores de materiais recicláveis e também a Lei sobre Cooperativismo nº 5764 de 16/12/1971 que auxilia na implantação e gerenciamento da cooperativa.

REFERÊNCIAS

Abrelpe – Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. Panorama dos Resíduos Sólidos no Brasil, 2009.

Alkmim, E. B. Conscientização ambiental e a percepção da comunidade sobre a coleta seletiva na cidade universitária da UFRJ. 2015. 150 p. Dissertação (Mestrado de Engenharia Urbana)- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 2015. Layragues, P. O cinismo da reciclagem: o significado da reciclagem e suas implicações para a educação ambiental. In: Vários Autores. Educação Ambiental: repensando o espaço da cidadania. São Paulo: Cortez, 2002.

Andrade, Eduardo L. Introdução à pesquisa operacional. 2 ed. Rio de Janeiro: LCT, 1998.

Bertrand, J. W. M.; Fransoo, J. C. Operations management research methodologies using quantitative modeling. International

Journal of Operations & Production Management, v. 22, n. 2, p. 241-264, 2002.

Bronson, R.; Naadimuthu, G. Operations Research. 2 Ed. New York: McGraw-Hill, 1997.

Caixeta-Filho, José Vicente. Pesquisa Operacional. São Paulo: Atlas, 2001.

Colin, E. C., (2007). Pesquisa Operacional: 170 aplicações em estratégica, finanças, logísticas, produção, marketing e vendas. Livro; Editora LTC; Rio de Janeiro; p. 498.

Cormen, Thomas H. Introduction to algorithm. 23. ed. MIT: McGraw-Hill, 1999.

D'Almeida, M. L. O.; Vilhena, A. Lixo municipal: manual de gerenciamento integrado. 2. ed. São Paulo: IPT/CEMPRE, 2000.

Goldbarg, M. C.; Luna, H. P. L. Otimização Combinatória e Programação Linear. 2 Ed. Editora Campus, 2000.

LachtermacheR, G.. Pesquisa operacional na tomada de decisões, 3.ed. Rio de Janeiro: Editora Campus Elsivier, 2007.

Loesh, C. E Hein, N., (2009). Pesquisa operacional: fundamentos e modelos. São Paulo: Saraiva.

Moreira, D. A. Pesquisa Operacional: Curso Introdutório. São Paulo: Thomson Learning, 2010.

Novaes, A. G. e Alvarenga, A. C. Logística Aplicada: Suprimento e Distribuição Física. São Paulo, Edgard Blucher, 2000.

Novaes, Antonio Galvão. Logística e gerenciamento da cadeia de distribuição. 3º Ed. Rio de Janeiro. Elsevier. 2007.

Prefeitura De Santa Rita Do Sapucaí, PMGIRS - Plano municipal de gestão integrada de resíduos sólidos se Santa Rita do Sapucaí-MG,2015.

Puccini, A.,L.. Introdução à programação linear. Rio de Janeiro: livros técnicos e científicos Editora S.A, 1980.

Silva, E. M.; Silva, E. M.; Gonçalves, V.; Murolo, A. C. Pesquisa Operacional: programação linear. 3 Ed. São Paulo: Atlas, 1998.

Silveira, D. T.; Córdova, F. P. A pesquisa científica. In: GERHARDT, T. E.; SILVEIRA, D. T. (org.). Métodos de Pesquisa. Porto Alegre: Editora de UFRGS, 2009. p. 31-42.

Slack, N.; Chambers, S.; Johnston, R. Administração da Produção. Atlas, São Paulo, 2002.

Vilhena, A. Lixo municipal: manual de gerenciamento integrado. 4. ed. São Paulo: CEMPRE, 2018.

Winston, W.L. (1994). Operations Research, Applications and Algorithm, 3 rd Ed.. Belmont (CA): Duxburry Press.